Strongly Convex Programming for Exact Matrix Completion and Robust Principal Component Analysis

Hui Zhang, Jian-Feng Cai, Lizhi Cheng, Jubo Zhu

The common task in matrix completion (MC) and robust principle component analysis (RPCA) is to recover a low-rank matrix from a given data matrix. These problems gained great attention from various areas in applied sciences recently, especially after the publication of the pioneering works of Cand`es et al.. One fundamental result in MC and RPCA is that nuclear norm based convex optimizations lead to the exact low-rank matrix recovery under suitable conditions. In this paper, we extend this result by showing that strongly convex optimizations can guarantee the exact low-rank matrix recovery as well. The result in this paper not only provides sufficient conditions under which the strongly convex models lead to the exact low-rank matrix recovery, but also guides us on how to choose suitable parameters in practical algorithms.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment