Distributed Source Localization in Wireless Underground Sensor Networks

Hongyang Chen, Robin Wentao Ouyang, Chen Wang

Node localization plays an important role in many practical applications of wireless underground sensor networks (WUSNs), such as finding the locations of earthquake epicenters, underground explosions, and microseismic events in mines. It is more difficult to obtain the time-difference-of-arrival (TDOA) measurements in WUSNs than in terrestrial wireless sensor networks because of the unfavorable channel characteristics in the underground environment. The robust Chinese remainder theorem (RCRT) has been shown to be an effective tool for solving the phase ambiguity problem and frequency estimation problem in wireless sensor networks. In this paper, the RCRT is used to robustly estimate TDOA or range difference in WUSNs and therefore improves the ranging accuracy in such networks. After obtaining the range difference, distributed source localization algorithms based on a diffusion strategy are proposed to decrease the communication cost while satisfying the localization accuracy requirement. Simulation results confirm the validity and efficiency of the proposed methods.

Knowledge Graph



Sign up or login to leave a comment