On the Complexity of the Equivalence Problem for Probabilistic Automata

Stefan Kiefer, Andrzej S. Murawski, Joël Ouaknine, Björn Wachter, James Worrell

Checking two probabilistic automata for equivalence has been shown to be a key problem for efficiently establishing various behavioural and anonymity properties of probabilistic systems. In recent experiments a randomised equivalence test based on polynomial identity testing outperformed deterministic algorithms. In this paper we show that polynomial identity testing yields efficient algorithms for various generalisations of the equivalence problem. First, we provide a randomized NC procedure that also outputs a counterexample trace in case of inequivalence. Second, we show how to check for equivalence two probabilistic automata with (cumulative) rewards. Our algorithm runs in deterministic polynomial time, if the number of reward counters is fixed. Finally we show that the equivalence problem for probabilistic visibly pushdown automata is logspace equivalent to the Arithmetic Circuit Identity Testing problem, which is to decide whether a polynomial represented by an arithmetic circuit is identically zero.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment