Bounds on Shannon Capacity and Ramsey Numbers from Product of Graphs

Xiaodong Xu, Stanisław Radziszowski

In this note we study Shannon capacity of channels in the context of classical Ramsey numbers. We overview some of the results on capacity of noisy channels modelled by graphs, and how some constructions may contribute to our knowledge of this capacity. We present an improvement to the constructions by Abbott and Song and thus establish new lower bounds for a special type of multicolor Ramsey numbers. We prove that our construction implies that the supremum of the Shannon capacity over all graphs with independence number 2 cannot be achieved by any finite graph power. This can be generalized to graphs with any bounded independence number.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment