Termination of Nondeterministic Quantum Programs

Yangjia Li, Nengkun Yu, Mingsheng Ying

We define a language-independent model of nondeterministic quantum programs in which a quantum program consists of a finite set of quantum processes. These processes are represented by quantum Markov chains over the common state space. An execution of a nondeterministic quantum program is modeled by a sequence of actions of individual processes. These actions are described by super-operators on the state Hilbert space. At each step of an execution, a process is chosen nondeterministically to perform the next action. A characterization of reachable space and a characterization of diverging states of a nondeterministic quantum program are presented. We establish a zero-one law for termination probability of the states in the reachable space of a nondeterministic quantum program. A combination of these results leads to a necessary and sufficient condition for termination of nondeterministic quantum programs. Based on this condition, an algorithm is found for checking termination of nondeterministic quantum programs within a fixed finite-dimensional state space. A striking difference between nondeterministic classical and quantum programs is shown by example: it is possible that each of several quantum programs simulates the same classical program which terminates with probability 1, but the nondeterministic program consisting of them terminates with probability 0 due to the interference carried in the execution of them.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment