A type system for PSPACE derived from light linear logic

Lucien Capedevielle

We present a polymorphic type system for lambda calculus ensuring that well-typed programs can be executed in polynomial space: dual light affine logic with booleans (DLALB). To build DLALB we start from DLAL (which has a simple type language with a linear and an intuitionistic type arrow, as well as one modality) which characterizes FPTIME functions. In order to extend its expressiveness we add two boolean constants and a conditional constructor in the same way as with the system STAB. We show that the value of a well-typed term can be computed by an alternating machine in polynomial time, thus such a term represents a program of PSPACE (given that PSPACE = APTIME). We also prove that all polynomial space decision functions can be represented in DLALB. Therefore DLALB characterizes PSPACE predicates.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment