A notion of incentive for agents is introduced which leads to a very general notion of an equilibrium for a finite game. Sufficient conditions for the existence of these equilibria are given. Known existence theorems are shown to be corollaries to the main theorem of this paper. Furthermore, conditions for the existence of equilibria in certain symmetric regions for games are also given. From the notion of general equilibrium, a general family of game dynamics are derived. This family incorporates all canonical examples of game dynamics. A proof is given for the full generality of this system.