On paths-based criteria for polynomial time complexity in proof-nets

Matthieu Perrinel

Girard's Light linear logic (LLL) characterized polynomial time in the proof-as-program paradigm with a bound on cut elimination. This logic relied on a stratification principle and a "one-door" principle which were generalized later respectively in the systems L^4 and L^3a. Each system was brought with its own complex proof of Ptime soundness. In this paper we propose a broad sufficient criterion for Ptime soundness for linear logic subsystems, based on the study of paths inside the proof-nets, which factorizes proofs of soundness of existing systems and may be used for future systems. As an additional gain, our bound stands for any reduction strategy whereas most bounds in the literature only stand for a particular strategy.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment