Connectivity of Confined Dense Networks: Boundary Effects and Scaling Laws

Justin P. Coon, Carl P. Dettmann, Orestis Georgiou

In this paper, we study the probability that a dense network confined within a given geometry is fully connected. We employ a cluster expansion approach often used in statistical physics to analyze the effects that the boundaries of the geometry have on connectivity. To maximize practicality and applicability, we adopt four important point-to-point link models based on outage probability in our analysis: single-input single-output (SISO), single-input multiple-output (SIMO), multiple-input single-output (MISO), and multiple-input multiple-output (MIMO). Furthermore, we derive diversity and power scaling laws that dictate how boundary effects can be mitigated (to leading order) in confined dense networks for each of these models. Finally, in order to demonstrate the versatility of our theory, we analyze boundary effects for dense networks comprising MIMO point-to-point links confined within a right prism, a polyhedron that accurately models many geometries that can be found in practice. We provide numerical results for this example, which verify our analytical results.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment