Image decomposition with anisotropic diffusion applied to leaf-texture analysis

Bruno Brandoli Machado, Wesley Nunes Gonçalves, Odemir Martinez Bruno

Texture analysis is an important field of investigation that has received a great deal of interest from computer vision community. In this paper, we propose a novel approach for texture modeling based on partial differential equation (PDE). Each image $f$ is decomposed into a family of derived sub-images. $f$ is split into the $u$ component, obtained with anisotropic diffusion, and the $v$ component which is calculated by the difference between the original image and the $u$ component. After enhancing the texture attribute $v$ of the image, Gabor features are computed as descriptors. We validate the proposed approach on two texture datasets with high variability. We also evaluate our approach on an important real-world application: leaf-texture analysis. Experimental results indicate that our approach can be used to produce higher classification rates and can be successfully employed for different texture applications.

Knowledge Graph



Sign up or login to leave a comment