A graph $G$ is called a replication graph of a graph $H$ if $G$ is obtained from $H$ by replacing vertices of $H$ by arbitrary cliques of vertices and then replacing each edge in $H$ by all the edges between corresponding cligues. For a given graph $H$ the $\rho_R(H)$ is the minimal number of vertices of a replication graph $G$ of $H$ such that every proper vertex coloring of $G$ contains a rainbow induced subgraph isomorphic to $H$ having exactly one vertex in each replication clique of $G$. We prove some bounds for $\rho_R$ for some classes of graphs and compute some exact values. Also some experimental results obtained by a computer search are presented and conjectures based on them are formulated.

Thanks. We have received your report. If we find this content to be in
violation of our guidelines,
we will remove it.

Ok