Patrick Erik Bradley

An effective $p$-adic encoding of dendrograms is presented through an explicit embedding into the Bruhat-Tits tree for a $p$-adic number field. This field depends on the number of children of a vertex and is a finite extension of the field of $p$-adic numbers. It is shown that fixing $p$-adic representatives of the residue field allows a natural way of encoding strings by identifying a given alphabet with such representatives. A simple $p$-adic hierarchic classification algorithm is derived for $p$-adic numbers, and is applied to strings over finite alphabets. Examples of DNA coding are presented and discussed. Finally, new geometric and combinatorial invariants of time series of $p$-adic dendrograms are developped.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment