Achievable Angles Between two Compressed Sparse Vectors Under Norm/Distance Constraints Imposed by the Restricted Isometry Property: A Plane Geometry Approach

Ling-Hua Chang, Jwo-Yuh Wu

The angle between two compressed sparse vectors subject to the norm/distance constraints imposed by the restricted isometry property (RIP) of the sensing matrix plays a crucial role in the studies of many compressive sensing (CS) problems. Assuming that (i) u and v are two sparse vectors separated by an angle thetha, and (ii) the sensing matrix Phi satisfies RIP, this paper is aimed at analytically characterizing the achievable angles between Phi*u and Phi*v. Motivated by geometric interpretations of RIP and with the aid of the well-known law of cosines, we propose a plane geometry based formulation for the study of the considered problem. It is shown that all the RIP-induced norm/distance constraints on Phi*u and Phi*v can be jointly depicted via a simple geometric diagram in the two-dimensional plane. This allows for a joint analysis of all the considered algebraic constraints from a geometric perspective. By conducting plane geometry analyses based on the constructed diagram, closed-form formulae for the maximal and minimal achievable angles are derived. Computer simulations confirm that the proposed solution is tighter than an existing algebraic-based estimate derived using the polarization identity. The obtained results are used to derive a tighter restricted isometry constant of structured sensing matrices of a certain kind, to wit, those in the form of a product of an orthogonal projection matrix and a random sensing matrix. Follow-up applications to three CS problems, namely, compressed-domain interference cancellation, RIP-based analysis of the orthogonal matching pursuit algorithm, and the study of democratic nature of random sensing matrices are investigated.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment