FastSIR Algorithm: A Fast Algorithm for simulation of epidemic spread in large networks by using SIR compartment model

Nino Antulov-Fantulin, Alen Lancic, Hrvoje Stefancic, Mile Sikic

The epidemic spreading on arbitrary complex networks is studied in SIR (Susceptible Infected Recovered) compartment model. We propose our implementation of a Naive SIR algorithm for epidemic simulation spreading on networks that uses data structures efficiently to reduce running time. The Naive SIR algorithm models full epidemic dynamics and can be easily upgraded to parallel version. We also propose novel algorithm for epidemic simulation spreading on networks called the FastSIR algorithm that has better average case running time than the Naive SIR algorithm. The FastSIR algorithm uses novel approach to reduce average case running time by constant factor by using probability distributions of the number of infected nodes. Moreover, the FastSIR algorithm does not follow epidemic dynamics in time, but still captures all infection transfers. Furthermore, we also propose an efficient recursive method for calculating probability distributions of the number of infected nodes. Average case running time of both algorithms has also been derived and experimental analysis was made on five different empirical complex networks.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment