Learning Probabilistic Models of Word Sense Disambiguation

Ted Pedersen

This dissertation presents several new methods of supervised and unsupervised learning of word sense disambiguation models. The supervised methods focus on performing model searches through a space of probabilistic models, and the unsupervised methods rely on the use of Gibbs Sampling and the Expectation Maximization (EM) algorithm. In both the supervised and unsupervised case, the Naive Bayesian model is found to perform well. An explanation for this success is presented in terms of learning rates and bias-variance decompositions.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment