Exploiting Cloze Questions for Few Shot Text Classification and Natural Language Inference

Timo Schick, Hinrich Schütze

Some NLP tasks can be solved in a fully unsupervised fashion by providing a pretrained language model with "task descriptions" in natural language (e.g., Radford et al., 2019). While this approach underperforms its supervised counterpart, we show in this work that the two ideas can be combined: We introduce Pattern-Exploiting Training (PET), a semi-supervised training procedure that reformulates input examples as cloze-style phrases to help language models understand a given task. These phrases are then used to assign soft labels to a large set of unlabeled examples. Finally, regular supervised training is performed on the resulting training set. For several tasks and languages, PET outperforms both supervised training and unsupervised approaches in low-resource settings by a large margin.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment