Active Learning for Coreference Resolution using Discrete Annotation

Belinda Li, Gabriel Stanovsky, Luke Zettlemoyer

We improve upon pairwise annotation for active learning in coreference resolution, by asking annotators to identify mention antecedents if a presented mention pair is deemed not coreferent. This simple modification, when combined with a novel mention clustering algorithm for selecting which examples to label, is extremely cost-efficient in terms of the performance obtained per annotation budget. In experiments with existing benchmark coreference datasets, we show that the signal from this additional question leads to significant performance gains per human-annotation hour. Future work can use our annotation protocol to effectively develop coreference models for new domains. Our code is publicly available.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment