Endowing Empathetic Dialogue Systems with Personas

Peixiang Zhong, Yan Zhu, Yong Liu, Chen Zhang, Hao Wang, Zaiqing Nie, Chunyan Miao

Empathetic dialogue systems have been shown to improve user satisfaction and task outcomes in numerous domains. In Psychology, persona has been shown to be highly correlated to personality, which in turn influences empathy. In addition, our empirical analysis also suggests that persona plays an important role in empathetic dialogues. To this end, we propose a new task to endow empathetic dialogue systems with personas and present the first empirical study on the impacts of persona on empathetic responding. Specifically, we first present a novel large-scale multi-domain dataset for empathetic dialogues with personas. We then propose CoBERT, an efficient BERT-based response selection model that obtains the state-of-the-art performance on our dataset. Finally, we conduct extensive experiments to investigate the impacts of persona on empathetic responding. Notably, our results show that persona improves empathetic responding more when CoBERT is trained on empathetic dialogues than non-empathetic ones, establishing an empirical link between persona and empathy in human dialogues.

Knowledge Graph



Sign up or login to leave a comment