Multi-Decoder RNN Autoencoder Based on Variational Bayes Method

Daisuke Kaji, Kazuho Watanabe, Masahiro Kobayashi

Clustering algorithms have wide applications and play an important role in data analysis fields including time series data analysis. However, in time series analysis, most of the algorithms used signal shape features or the initial value of hidden variable of a neural network. Little has been discussed on the methods based on the generative model of the time series. In this paper, we propose a new clustering algorithm focusing on the generative process of the signal with a recurrent neural network and the variational Bayes method. Our experiments show that the proposed algorithm not only has a robustness against for phase shift, amplitude and signal length variations but also provide a flexible clustering based on the property of the variational Bayes method.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment