Multi-choice Dialogue-Based Reading Comprehension with Knowledge and Key Turns

Junlong Li, Zhuosheng Zhang, Hai Zhao

Multi-choice machine reading comprehension (MRC) requires models to choose the correct answer from candidate options given a passage and a question. Our research focuses dialogue-based MRC, where the passages are multi-turn dialogues. It suffers from two challenges, the answer selection decision is made without support of latently helpful commonsense, and the multi-turn context may hide considerable irrelevant information. This work thus makes the first attempt to tackle those two challenges by extracting substantially important turns and utilizing external knowledge to enhance the representation of context. In this paper, the relevance of each turn to the question are calculated to choose key turns. Besides, terms related to the context and the question in a knowledge graph are extracted as external knowledge. The original context, question and external knowledge are encoded with the pre-trained language model, then the language representation and key turns are combined together with a will-designed mechanism to predict the answer. Experimental results on a DREAM dataset show that our proposed model achieves great improvements on baselines.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment