Human-Like Summaries from Heterogeneous and Time-Windowed Software Development Artefacts

Mahfouth Alghamdi, Christoph Treude, Markus Wagner

Automatic text summarisation has drawn considerable interest in the area of software engineering. It is challenging to summarise the activities related to a software project, (1) because of the volume and heterogeneity of involved software artefacts, and (2) because it is unclear what information a developer seeks in such a multi-document summary. We present the first framework for summarising multi-document software artefacts containing heterogeneous data within a given time frame. To produce human-like summaries, we employ a range of iterative heuristics to minimise the cosine-similarity between texts and high-dimensional feature vectors. A first study shows that users find the automatically generated summaries the most useful when they are generated using word similarity and based on the eight most relevant software artefacts.

Knowledge Graph



Sign up or login to leave a comment