Given an undirected graph $G$, the Densest $k$-subgraph problem (DkS) asks to compute a set $S \subset V$ of cardinality $\left\lvert S\right\rvert \leq k$ such that the weight of edges inside $S$ is maximized. This is a fundamental NP-hard problem whose approximability, inspite of many decades of research, is yet to be settled. The current best known approximation algorithm due to Bhaskara et al. (2010) computes a $\mathcal{O}\left({n^{1/4 + \epsilon}}\right)$ approximation in time $n^{\mathcal{O}\left(1/\epsilon\right)}$. We ask what are some "easier" instances of this problem? We propose some natural semi-random models of instances with a planted dense subgraph, and study approximation algorithms for computing the densest subgraph in them. These models are inspired by the semi-random models of instances studied for various other graph problems such as the independent set problem, graph partitioning problems etc. For a large range of parameters of these models, we get significantly better approximation factors for the Densest $k$-subgraph problem. Moreover, our algorithm recovers a large part of the planted solution.

Thanks. We have received your report. If we find this content to be in
violation of our guidelines,
we will remove it.

Ok