Learning from Sparse Datasets: Predicting Concrete's Strength by Machine Learning

Boya Ouyang, Yuhai Li, Yu Song, Feishu Wu, Huizi Yu, Yongzhe Wang, Mathieu Bauchy, Gaurav Sant

Despite enormous efforts over the last decades to establish the relationship between concrete proportioning and strength, a robust knowledge-based model for accurate concrete strength predictions is still lacking. As an alternative to physical or chemical-based models, data-driven machine learning (ML) methods offer a new solution to this problem. Although this approach is promising for handling the complex, non-linear, non-additive relationship between concrete mixture proportions and strength, a major limitation of ML lies in the fact that large datasets are needed for model training. This is a concern as reliable, consistent strength data is rather limited, especially for realistic industrial concretes. Here, based on the analysis of a large dataset (>10,000 observations) of measured compressive strengths from industrially-produced concretes, we compare the ability of select ML algorithms to "learn" how to reliably predict concrete strength as a function of the size of the dataset. Based on these results, we discuss the competition between how accurate a given model can eventually be (when trained on a large dataset) and how much data is actually required to train this model.

Knowledge Graph



Sign up or login to leave a comment