Mainlining Databases: Supporting Fast Transactional Workloads on Universal Columnar Data File Formats

Tianyu Li, Matthew Butrovich, Amadou Ngom, Wan Shen Lim, Wes McKinney, Andrew Pavlo

The proliferation of modern data processing tools has given rise to open-source columnar data formats. The advantage of these formats is that they help organizations avoid repeatedly converting data to a new format for each application. These formats, however, are read-only, and organizations must use a heavy-weight transformation process to load data from on-line transactional processing (OLTP) systems. We aim to reduce or even eliminate this process by developing a storage architecture for in-memory database management systems (DBMSs) that is aware of the eventual usage of its data and emits columnar storage blocks in a universal open-source format. We introduce relaxations to common analytical data formats to efficiently update records and rely on a lightweight transformation process to convert blocks to a read-optimized layout when they are cold. We also describe how to access data from third-party analytical tools with minimal serialization overhead. To evaluate our work, we implemented our storage engine based on the Apache Arrow format and integrated it into the DB-X DBMS. Our experiments show that our approach achieves comparable performance with dedicated OLTP DBMSs while enabling orders-of-magnitude faster data exports to external data science and machine learning tools than existing methods.

Knowledge Graph



Sign up or login to leave a comment