Delegating Quantum Computation in the Quantum Random Oracle Model

Jiayu Zhang

A delegation scheme allows a computationally weak client to use a server's resources to help it evaluate a complex circuit without leaking any information about the input (other than its length) to the server. In this paper, we consider delegation schemes for quantum circuits, where we try to minimize the quantum operations needed by the client. We construct a new scheme for delegating a large circuit family, which we call "C+P circuits". "C+P" circuits are the circuits composed of Toffoli gates and diagonal gates. Our scheme is non-interactive, requires very little quantum computation from the client (proportional to input length but independent of the circuit size), and can be proved secure in the quantum random oracle model, without relying on additional assumptions, such as the existence of fully homomorphic encryption. In practice the random oracle can be replaced by an appropriate hash function or block cipher, for example, SHA-3, AES. This protocol allows a client to delegate the most expensive part of some quantum algorithms, for example, Shor's algorithm. The previous protocols that are powerful enough to delegate Shor's algorithm require either many rounds of interactions or the existence of FHE. The protocol requires asymptotically fewer quantum gates on the client side compared to running Shor's algorithm locally. To hide the inputs, our scheme uses an encoding that maps one input qubit to multiple qubits. We then provide a novel generalization of classical garbled circuits ("reversible garbled circuits") to allow the computation of Toffoli circuits on this encoding. We also give a technique that can support the computation of phase gates on this encoding. To prove the security of this protocol, we study key dependent message(KDM) security in the quantum random oracle model. KDM security was not previously studied in quantum settings.

Knowledge Graph



Sign up or login to leave a comment