APo-VAE: Text Generation in Hyperbolic Space

Shuyang Dai, Zhe Gan, Yu Cheng, Chenyang Tao, Lawrence Carin, Jingjing Liu

Natural language often exhibits inherent hierarchical structure ingrained with complex syntax and semantics. However, most state-of-the-art deep generative models learn embeddings only in Euclidean vector space, without accounting for this structural property of language. In this paper, we investigate text generation in a hyperbolic latent space to learn continuous hierarchical representations. An Adversarial Poincare Variational Autoencoder (APo-VAE) is presented, where both the prior and variational posterior of latent variables are defined over a Poincare ball via wrapped normal distributions. By adopting the primal-dual formulation of KL divergence, an adversarial learning procedure is introduced to empower robust model training. Extensive experiments in language modeling and dialog-response generation tasks demonstrate the winning effectiveness of the proposed APo-VAE model over VAEs in Euclidean latent space, thanks to its superb capabilities in capturing latent language hierarchies in hyperbolic space.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment