Computational Steering of Geometrically Sensitive Simulations

Corey Wetterer-Nelson, John A. Evans

In the context of high-performance finite element analysis, the cost of iteratively modifying a computational domain via re-meshing and restarting the analysis becomes time prohibitive as the size of simulations increases. In this paper, we demonstrate a new interactive simulation pipeline targeting high-performance fluid dynamics simulations where the computational domain is modified in situ, that is, while the simulation is ongoing. This pipeline is designed to be modular so that it may interface with any existing finite element simulation framework. A server-client architecture is employed to manage simulation mesh data existing on a high performance computing resource while user-prescribed geometric modifications take place on a separate workstation. We employ existing in situ visualization techniques to rapidly inform the user of simulation progression, enabling computational steering. By expressing the simulation domain in a reduced fashion on the client application, this pipeline manages highly refined finite element simulation domains on the server while maintaining good performance on the client application.

Knowledge Graph



Sign up or login to leave a comment