Complexity of the Infinitary Lambek Calculus with Kleene Star

Stepan Kuznetsov

We consider the Lambek calculus, or non-commutative multiplicative intuitionistic linear logic, extended with iteration, or Kleene star, axiomatised by means of an $\omega$-rule, and prove that the derivability problem in this calculus is $\Pi_1^0$-hard. This solves a problem left open by Buszkowski (2007), who obtained the same complexity bound for infinitary action logic, which additionally includes additive conjunction and disjunction. As a by-product, we prove that any context-free language without the empty word can be generated by a Lambek grammar with unique type assignment, without Lambek's non-emptiness restriction imposed (cf. Safiullin 2007).

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment