Maximal regularity of multistep fully discrete finite element methods for parabolic equations

Buyang Li

This article extends the semidiscrete maximal $L^p$-regularity results in [27] to multistep fully discrete finite element methods for parabolic equations with more general diffusion coefficients in $W^{1,d+\beta}$, where $d$ is the dimension of space and $\beta>0$. The maximal angles of $R$-boundedness are characterized for the analytic semigroup $e^{zA_h}$ and the resolvent operator $z(z-A_h)^{-1}$, respectively, associated to an elliptic finite element operator $A_h$. Maximal $L^p$-regularity, optimal $\ell^p(L^q)$ error estimate, and $\ell^p(W^{1,q})$ estimate are established for fully discrete finite element methods with multistep backward differentiation formula.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment