Machine Learning Pipeline for Pulsar Star Dataset

Alexander Ylnner Choquenaira Florez, Braulio Valentin Sanchez Vinces, Diana Carolina Roca Arroyo, Josimar Edinson Chire Saire, Patrıcia Batista Franco

This work brings together some of the most common machine learning (ML) algorithms, and the objective is to make a comparison at the level of obtained results from a set of unbalanced data. This dataset is composed of almost 17 thousand observations made to astronomical objects to identify pulsars (HTRU2). The methodological proposal based on evaluating the accuracy of these different models on the same database treated with two different strategies for unbalanced data. The results show that in spite of the noise and unbalance of classes present in this type of data, it is possible to apply them on standard ML algorithms and obtain promising accuracy ratios.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment