On perfect, amicable, and sociable chains

Jean-Luc Marichal

Let $x = (x_0,...,x_{n-1})$ be an n-chain, i.e., an n-tuple of non-negative integers $< n$. Consider the operator $s: x \mapsto x' = (x'_0,...,x'_{n-1})$, where x'_j represents the number of $j$'s appearing among the components of x. An n-chain x is said to be perfect if $s(x) = x$. For example, (2,1,2,0,0) is a perfect 5-chain. Analogously to the theory of perfect, amicable, and sociable numbers, one can define from the operator s the concepts of amicable pair and sociable group of chains. In this paper we give an exhaustive list of all the perfect, amicable, and sociable chains.

Knowledge Graph



Sign up or login to leave a comment