An Efficient End-to-End Deep Learning Training Framework via Fine-Grained Pattern-Based Pruning

Chengming Zhang, Geng Yuan, Wei Niu, Jiannan Tian, Sian Jin, Donglin Zhuang, Zhe Jiang, Yanzhi Wang, Bin Ren, Shuaiwen Leon Song, Dingwen Tao

Convolutional neural networks (CNNs) are becoming increasingly deeper, wider, and non-linear because of the growing demand on prediction accuracy and analysis quality. The wide and deep CNNs, however, require a large amount of computing resources and processing time. Many previous works have studied model pruning to improve inference performance, but little work has been done for effectively reducing training cost. In this paper, we propose ClickTrain: an efficient and accurate end-to-end training and pruning framework for CNNs. Different from the existing pruning-during-training work, ClickTrain provides higher model accuracy and compression ratio via fine-grained architecture-preserving pruning. By leveraging pattern-based pruning with our proposed novel accurate weight importance estimation, dynamic pattern generation and selection, and compiler-assisted computation optimizations, ClickTrain generates highly accurate and fast pruned CNN models for direct deployment without any time overhead, compared with the baseline training. ClickTrain also reduces the end-to-end time cost of the state-of-the-art pruning-after-training methods by up to about 67% with comparable accuracy and compression ratio. Moreover, compared with the state-of-the-art pruning-during-training approach, ClickTrain reduces the accuracy drop by up to 2.1% and improves the compression ratio by up to 2.2X on the tested datasets, under similar limited training time.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment