SalSum: Saliency-based Video Summarization using Generative Adversarial Networks

George Pantazis, George Dimas, Dimitris K. Iakovidis

The huge amount of video data produced daily by camera-based systems, such as surveilance, medical and telecommunication systems, emerges the need for effective video summarization (VS) methods. These methods should be capable of creating an overview of the video content. In this paper, we propose a novel VS method based on a Generative Adversarial Network (GAN) model pre-trained with human eye fixations. The main contribution of the proposed method is that it can provide perceptually compatible video summaries by combining both perceived color and spatiotemporal visual attention cues in a unsupervised scheme. Several fusion approaches are considered for robustness under uncertainty, and personalization. The proposed method is evaluated in comparison to state-of-the-art VS approaches on the benchmark dataset VSUMM. The experimental results conclude that SalSum outperforms the state-of-the-art approaches by providing the highest f-measure score on the VSUMM benchmark.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment