AST-GCN: Attribute-Augmented Spatiotemporal Graph Convolutional Network for Traffic Forecasting

Jiawei Zhu, Chao Tao, Hanhan Deng, Ling Zhao, Pu Wang, Tao Lin, Haifeng Li

Traffic forecasting is a fundamental and challenging task in the field of intelligent transportation. Accurate forecasting not only depends on the historical traffic flow information but also needs to consider the influence of a variety of external factors, such as weather conditions and surrounding POI distribution. Recently, spatiotemporal models integrating graph convolutional networks and recurrent neural networks have become traffic forecasting research hotspots and have made significant progress. However, few works integrate external factors. Therefore, based on the assumption that introducing external factors can enhance the spatiotemporal accuracy in predicting traffic and improving interpretability, we propose an attribute-augmented spatiotemporal graph convolutional network (AST-GCN). We model the external factors as dynamic attributes and static attributes and design an attribute-augmented unit to encode and integrate those factors into the spatiotemporal graph convolution model. Experiments on real datasets show the effectiveness of considering external information on traffic forecasting tasks when compared to traditional traffic prediction methods. Moreover, under different attribute-augmented schemes and prediction horizon settings, the forecasting accuracy of the AST-GCN is higher than that of the baselines.

Knowledge Graph



Sign up or login to leave a comment