Approximation of the geodesic curvature and applications for spherical geometric subdivision schemes

Aziz Ikemakhen, Mohamed Bellaihou

Many applications of geometry modeling and computer graphics necessite accurate curvature estimations of curves on the plane or on manifolds. In this paper, we define the notion of the discrete geodesic curvature of a geodesic polygon on a smooth surface. We show that, when a geodesic polygon P is closely inscribed on a $C^2$-regular curve, the discrete geodesic curvature of P estimates the geodesic curvature of C. This result allows us to evaluate the geodesic curvature of discrete curves on surfaces. In particular, we apply such result to planar and spherical 4-point angle-based subdivision schemes. We show that such schemes cannot generate in general $G^2$-continuous curves. We also give a novel example of $G^2$-continuous subdivision scheme on the unit sphere using only points and discrete geodesic curvature called curvature-based 6-point spherical scheme.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment