Design and Evaluation of A Cyber-Physical Resilient Power System Testbed

Abhijeet Sahu, Patrick Wlazlo, Zeyu Mao, Hao Huang, Ana Goulart, Katherine Davis, Saman Zonouz

A power system is a complex cyber-physical system whose security is critical to its function. A major challenge is to model and analyze its communication pathways with respect to cyber threats. To achieve this, the design and evaluation of a cyber-physical power system (CPPS) testbed called Resilient Energy Systems Lab (RESLab) is presented that captures realistic cyber, physical, and protection system features. RESLab is architected to be a fundamental tool for studying and improving the resilience of complex CPPS to cyber threats. The cyber network is emulated using Common Open Research Emulator (CORE) that acts as a gateway for the physical and protection devices to communicate. The physical grid is simulated in the dynamic time frame using PowerWorld Dynamic Studio (PWDS). The protection components are modeled with both PWDS and physical devices including the SEL Real-Time Automation Controller (RTAC). Distributed Network Protocol 3 (DNP3) is used to monitor and control the grid. Then, exemplifying the design and validation of these tools, this paper presents four case studies on cyber-attack and defense using RESLab, where we demonstrate false data and command injection using Man-in-the-Middle and Denial of Service attacks and validate them on a large-scale synthetic electric grid.

Knowledge Graph



Sign up or login to leave a comment