Avikainen showed that, for any $p,q \in [1,\infty)$, and any function $f$ of bounded variation in $\mathbb{R}$, it holds that $\mathbb{E}[|f(X)-f(\widehat{X})|^{q}] \leq C(p,q) \mathbb{E}[|X-\widehat{X}|^{p}]^{\frac{1}{p+1}}$, where $X$ is a one-dimensional random variable with a bounded density, and $\widehat{X}$ is an arbitrary random variable. In this article, we will provide multi-dimensional versions of this estimate for functions of bounded variation in $\mathbb{R}^{d}$, Orlicz--Sobolev spaces, Sobolev spaces with variable exponents, and fractional Sobolev spaces. The main idea of our arguments is to use the Hardy--Littlewood maximal estimates and pointwise characterizations of these function spaces. We apply our main results to analyze the numerical approximation for some irregular functionals of the solution of stochastic differential equations.

Thanks. We have received your report. If we find this content to be in
violation of our guidelines,
we will remove it.

Ok