$L^{q}$-error estimates for approximation of irregular functionals of random vectors

Dai Taguchi, Akihiro Tanaka, Tomooki Yuasa

Avikainen showed that, for any $p,q \in [1,\infty)$, and any function $f$ of bounded variation in $\mathbb{R}$, it holds that $\mathbb{E}[|f(X)-f(\widehat{X})|^{q}] \leq C(p,q) \mathbb{E}[|X-\widehat{X}|^{p}]^{\frac{1}{p+1}}$, where $X$ is a one-dimensional random variable with a bounded density, and $\widehat{X}$ is an arbitrary random variable. In this article, we will provide multi-dimensional versions of this estimate for functions of bounded variation in $\mathbb{R}^{d}$, Orlicz--Sobolev spaces, Sobolev spaces with variable exponents, and fractional Sobolev spaces. The main idea of our arguments is to use the Hardy--Littlewood maximal estimates and pointwise characterizations of these function spaces. We apply our main results to analyze the numerical approximation for some irregular functionals of the solution of stochastic differential equations.

Knowledge Graph



Sign up or login to leave a comment