Short term solar energy prediction by machine learning algorithms

Farah Shahid, Aneela Zameer, Mudasser Afzal, Muhammad Hassan

Smooth power generation from solar stations demand accurate, reliable and efficient forecast of solar energy for optimal integration to cater market demand; however, the implicit instability of solar energy production may cause serious problems for the smooth power generation. We report daily prediction of solar energy by exploiting the strength of machine learning techniques to capture and analyze complicated behavior of enormous features effectively. For this purpose, dataset comprising of 98 solar stations has been taken from energy competition of American Meteorological Society (AMS) for predicting daily solar energy. Forecast models of base line regressors including linear, ridge, lasso, decision tree, random forest and artificial neural networks have been implemented on the AMS solar dataset. Grid size is converted into two sections: 16x9 and 10x4 to ascertain attributes contributing more towards the generated power from densely located stations on global ensemble forecast system (GEFS). To evaluate the models, statistical measures of prediction error in terms of RMSE, MAE and R2_score have been analyzed and compared with the existing techniques. It has been observed that improved accuracy is achieved through random forest and ridge regressor for both grid sizes in contrast to all other proposed methods. Stability and reliability of the proposed schemes are evaluated on a single solar station as well as on multiple independent runs.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment