Morphological Network: How Far Can We Go with Morphological Neurons?

Ranjan Mondal, Soumendu Sundar Mukherjee, Sanchayan Santra, Bhabatosh Chanda

In recent years, the idea of using morphological operations as networks has received much attention. Mathematical morphology provides very efficient and useful image processing and image analysis tools based on basic operators like dilation and erosion, defined in terms of kernels. Many other morphological operations are built up using the dilation and erosion operations. Although the learning of structuring elements such as dilation or erosion using the backpropagation algorithm is not new, the order and the way these morphological operations are used is not standard. In this paper, we have theoretically analyzed the use of morphological operations for processing 1D feature vectors and shown that this gets extended to the 2D case in a simple manner. Our theoretical results show that a morphological block represents a sum of hinge functions. Hinge functions are used in many places for classification and regression tasks (Breiman (1993)). We have also proved a universal approximation theorem -- a stack of two morphological blocks can approximate any continuous function over arbitrary compact sets. To experimentally validate the efficacy of this network in real-life applications, we have evaluated its performance on satellite image classification datasets since morphological operations are very sensitive to geometrical shapes and structures. We have also shown results on a few tasks like segmentation of blood vessels from fundus images, segmentation of lungs from chest x-ray and image dehazing. The results are encouraging and further establishes the potential of morphological networks.

Knowledge Graph



Sign up or login to leave a comment