Nesting negations in FO2 over infinite words

Viktor Henriksson, Manfred Kufleitner

We consider two-variable first-order logic FO2 over infinite words. Restricting the number of nested negations defines an infinite hierarchy; its levels are often called the half-levels of the FO2 quantifier alternation hierarchy. For every level of this hierarchy, we give an effective characterization. For the lower levels, this characterization is a combination of an algebraic and a topological property. For the higher levels, algebraic properties turn out to be sufficient. Within two-variable first-order logic, each algebraic property is a single ordered identity of omega-terms. The topological properties are the same as for the lower half-levels of the quantifier alternation hierarchy without the two-variable restriction (i.e., the Cantor topology and the alphabetic topology). Our result generalizes the corresponding result for finite words. The proof uses novel techniques and is based on a refinement of Mal'cev products for ordered monoids.

Knowledge Graph



Sign up or login to leave a comment