Improving KernelSHAP: Practical Shapley Value Estimation via Linear Regression

Ian Covert, Su-In Lee

The Shapley value solution concept from cooperative game theory has become popular for interpreting ML models, but efficiently estimating Shapley values remains challenging, particularly in the model-agnostic setting. We revisit the idea of estimating Shapley values via linear regression to understand and improve upon this approach. By analyzing KernelSHAP alongside a newly proposed unbiased estimator, we develop techniques to detect its convergence and calculate uncertainty estimates. We also find that that the original version incurs a negligible increase in bias in exchange for a significant reduction in variance, and we propose a variance reduction technique that further accelerates the convergence of both estimators. Finally, we develop a version of KernelSHAP for stochastic cooperative games that yields fast new estimators for two global explanation methods.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment