Neural Prototype Trees for Interpretable Fine-grained Image Recognition

Meike Nauta, Ron van Bree, Christin Seifert

Interpretable machine learning addresses the black-box nature of deep neural networks. Visual prototypes have been suggested for intrinsically interpretable image recognition, instead of generating post-hoc explanations that approximate a trained model. However, a large number of prototypes can be overwhelming. To reduce explanation size and improve interpretability, we propose the Neural Prototype Tree (ProtoTree), a deep learning method that includes prototypes in an interpretable decision tree to faithfully visualize the entire model. In addition to global interpretability, a path in the tree explains a single prediction. Each node in our binary tree contains a trainable prototypical part. The presence or absence of this prototype in an image determines the routing through a node. Decision making is therefore similar to human reasoning: Does the bird have a red throat? And an elongated beak? Then it's a hummingbird! We tune the accuracy-interpretability trade-off using ensembling and pruning. We apply pruning without sacrificing accuracy, resulting in a small tree with only 8 prototypes along a path to classify a bird from 200 species. An ensemble of 5 ProtoTrees achieves competitive accuracy on the CUB-200-2011 and Stanford Cars data sets. Code is available at https://github.com/M-Nauta/ProtoTree

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment