Bayesian Graph Neural Networks for Molecular Property Prediction

George Lamb, Brooks Paige

Graph neural networks for molecular property prediction are frequently underspecified by data and fail to generalise to new scaffolds at test time. A potential solution is Bayesian learning, which can capture our uncertainty in the model parameters. This study benchmarks a set of Bayesian methods applied to a directed MPNN, using the QM9 regression dataset. We find that capturing uncertainty in both readout and message passing parameters yields enhanced predictive accuracy, calibration, and performance on a downstream molecular search task.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment