Explainable AI for Software Engineering

Chakkrit Tantithamthavorn, Jirayus Jiarpakdee, John Grundy

Artificial Intelligence/Machine Learning techniques have been widely used in software engineering to improve developer productivity, the quality of software systems, and decision-making. However, such AI/ML models for software engineering are still impractical, not explainable, and not actionable. These concerns often hinder the adoption of AI/ML models in software engineering practices. In this article, we first highlight the need for explainable AI in software engineering. Then, we summarize three successful case studies on how explainable AI techniques can be used to address the aforementioned challenges by making software defect prediction models more practical, explainable, and actionable.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment