Pre-trained language models as knowledge bases for Automotive Complaint Analysis

V. D. Viellieber, M. Aßenmacher

Recently it has been shown that large pre-trained language models like BERT (Devlin et al., 2018) are able to store commonsense factual knowledge captured in its pre-training corpus (Petroni et al., 2019). In our work we further evaluate this ability with respect to an application from industry creating a set of probes specifically designed to reveal technical quality issues captured as described incidents out of unstructured customer feedback in the automotive industry. After probing the out-of-the-box versions of the pre-trained models with fill-in-the-mask tasks we dynamically provide it with more knowledge via continual pre-training on the Office of Defects Investigation (ODI) Complaints data set. In our experiments the models exhibit performance regarding queries on domain-specific topics compared to when queried on factual knowledge itself, as Petroni et al. (2019) have done. For most of the evaluated architectures the correct token is predicted with a $Precision@1$ ($P@1$) of above 60\%, while for $P@5$ and $P@10$ even values of well above 80\% and up to 90\% respectively are reached. These results show the potential of using language models as a knowledge base for structured analysis of customer feedback.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment