Fixed Priority Global Scheduling from a Deep Learning Perspective

Hyunsung Lee, Michel Wang, Honguk Woo

Deep Learning has been recently recognized as one of the feasible solutions to effectively address combinatorial optimization problems, which are often considered important yet challenging in various research domains. In this work, we first present how to adopt Deep Learning for real-time task scheduling through our preliminary work upon fixed priority global scheduling (FPGS) problems. We then briefly discuss possible generalizations of Deep Learning adoption for several realistic and complicated FPGS scenarios, e.g., scheduling tasks with dependency, mixed-criticality task scheduling. We believe that there are many opportunities for leveraging advanced Deep Learning technologies to improve the quality of scheduling in various system configurations and problem scenarios.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment