Hierarchical Deep Recurrent Neural Network based Method for Fault Detection and Diagnosis

Piyush Agarwal, Jorge Ivan Mireles Gonzalez, Ali Elkamel, Hector Budman

A Deep Neural Network (DNN) based algorithm is proposed for the detection and classification of faults in industrial plants. The proposed algorithm has the ability to classify faults, especially incipient faults that are difficult to detect and diagnose with traditional threshold based statistical methods or by conventional Artificial Neural Networks (ANNs). The algorithm is based on a Supervised Deep Recurrent Autoencoder Neural Network (Supervised DRAE-NN) that uses dynamic information of the process along the time horizon. Based on this network a hierarchical structure is formulated by grouping faults based on their similarity into subsets of faults for detection and diagnosis. Further, an external pseudo-random binary signal (PRBS) is designed and injected into the system to identify incipient faults. The hierarchical structure based strategy improves the detection and classification accuracy significantly for both incipient and non-incipient faults. The proposed approach is tested on the benchmark Tennessee Eastman Process resulting in significant improvements in classification as compared to both multivariate linear model-based strategies and non-hierarchical nonlinear model-based strategies.

Knowledge Graph



Sign up or login to leave a comment