MeLPUF: Memory in Logic PUF

Christopher Vega, Patanjali SLPSK, Shubhra Deb Paul, Swarup Bhunia

Physical Unclonable Functions (PUFs) are used for securing electronic designs across the implementation spectrum ranging from lightweight FPGA to server-class ASIC designs. However, current PUF implementations are vulnerable to model-building attacks; they often incur significant design overheads and are challenging to configure based on application-specific requirements. These factors limit their application, primarily in the case of the system on chip (SoC) designs used in diverse applications. In this work, we propose MeL-PUF - Memory-in-Logic PUF, a low-overhead, distributed, and synthesizable PUF that takes advantage of existing logic gates in a design and transforms them to create cross-coupled inverters (i.e. memory cells) controlled by a PUF control signal. The power-up states of these memory cells are used as the source of entropy in the proposed PUF architecture. These on-demand memory cells can be distributed across the combinational logic of various intellectual property (IP) blocks in a system on chip (SoC) design. They can also be synthesized with a standard logic synthesis tool to meet the area,power, or performance constraints of a design. By aggregating the power-up states from multiple such memory cells, we can create a PUF signature or digital fingerprint of varying size. We evaluate the MeL-PUF signature quality with both circuit-level simulations as well as with measurements in FPGA devices. We show that MeL-PUF provides high-quality signatures in terms of uniqueness, randomness, and robustness, without incurring large overheads. We also suggest additional optimizations that can be leveraged to improve the performance of MeL-PUF.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment