Reciprocal Supervised Learning Improves Neural Machine Translation

Minkai Xu, Mingxuan Wang, Zhouhan Lin, Hao Zhou, Weinan Zhang, Lei li

Despite the recent success on image classification, self-training has only achieved limited gains on structured prediction tasks such as neural machine translation (NMT). This is mainly due to the compositionality of the target space, where the far-away prediction hypotheses lead to the notorious reinforced mistake problem. In this paper, we revisit the utilization of multiple diverse models and present a simple yet effective approach named Reciprocal-Supervised Learning (RSL). RSL first exploits individual models to generate pseudo parallel data, and then cooperatively trains each model on the combined synthetic corpus. RSL leverages the fact that different parameterized models have different inductive biases, and better predictions can be made by jointly exploiting the agreement among each other. Unlike the previous knowledge distillation methods built upon a much stronger teacher, RSL is capable of boosting the accuracy of one model by introducing other comparable or even weaker models. RSL can also be viewed as a more efficient alternative to ensemble. Extensive experiments demonstrate the superior performance of RSL on several benchmarks with significant margins.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment