Group testing for overlapping communities

Pavlos Nikolopoulos, Sundara Rajan Srinivasavaradhan, Tao Guo, Christina Fragouli, Suhas Diggavi

In this paper, we propose algorithms that leverage a known community structure to make group testing more efficient. We consider a population organized in connected communities: each individual participates in one or more communities, and the infection probability of each individual depends on the communities (s)he participates in. Use cases include students who participate in several classes, and workers who share common spaces. Group testing reduces the number of tests needed to identify the infected individuals by pooling diagnostic samples and testing them together. We show that making testing algorithms aware of the community structure, can significantly reduce the number of tests needed both for adaptive and non-adaptive group testing.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment